260 research outputs found

    A flexible and highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets

    Get PDF
    The demand for high performance multifunctional wearable devices is more and more pushing towards the development of novel low-cost, soft and flexible sensors with high sensitivity. In the present work, we describe the fabrication process and the properties of new polydimethylsiloxane (PDMS) foams loaded with multilayer graphene nanoplatelets (MLGs) for application as high sensitive piezoresistive pressure sensors. The effective DC conductivity of the produced foams is measured as a function of MLG loading. The piezoresistive response of the MLG-PDMS foam-based sensor at different strain rates is assessed through quasi-static pressure tests. The results of the experimental investigations demonstrated that sensor loaded with 0.96 wt.% of MLGs is characterized by a highly repeatable pressure-dependent conductance after a few stabilization cycles and it is suitable for detecting compressive stresses as low as 10 kPa, with a sensitivity of 0.23 kPa−1, corresponding to an applied pressure of 70 kPa. Moreover, it is estimated that the sensor is able to detect pressure variations of ~1 Pa. Therefore, the new graphene-PDMS composite foam is a lightweight cost-effective material, suitable for sensing applications in the subtle or low and medium pressure ranges

    Piezoelectric effect and electroactive phase nucleation in self-standing films of unpoled PVDF nanocomposite films

    Get PDF
    Novel polymer-based piezoelectric nanocomposites with enhanced electromechanical properties open new opportunities for the development of wearable energy harvesters and sensors. This paper investigates how the dissolution of different types of hexahydrate metal salts affects β-phase content and piezoelectric response (d33) at nano-and macroscales of polyvinylidene fluoride (PVDF) nanocomposite films. The strongest enhancement of the piezoresponse is observed in PVDF nanocomposites processed with Mg(NO3)2·6H2O. The increased piezoresponse is attributed to the synergistic effect of the dipole moment associated with the nucleation of the electroactive phase and with the electrostatic interaction between the CF2group of PVDF and the dissolved salt through hydrogen bonding. The combination of nanofillers like graphene nanoplatelets or zinc oxide nanorods with the hexahydrate salt dissolution in PVDF results in a dramatic reduction of d33, because the nanofiller assumes a competitive role with respect to H-bond formation between PVDF and the dissolved metal salt. The measured peak value of d33reaches the local value of 13.49 pm/V, with an average of 8.88 pm/V over an area of 1 cm2. The proposed selection of metal salt enables low-cost production of piezoelectric PVDF nanocomposite films, without electrical poling or mechanical stretching, offering new opportunities for the development of devices for energy harvesting and wearable sensors

    Low-Terahertz Transparent Graphene-Based Absorber

    Get PDF
    A new, transparent, metal-free absorber, based on the use of multilayer graphene/dielectric laminates (GLs), is proposed for applications in the low-terahertz frequency range. The designed absorber has a total thickness of around 70 µm and consists of a front matching dielectric layer followed by a GL, a dielectric spacer and a back GL. The laminates are periodic structures constituted of graphene sheets separated by 50-nm-thick polyethylene terephthalate (PET) interlayers, while the matching layer and the spacer are one-quarter-wavelength thick and made of PET. The GLs are modeled as homogeneous-equivalent single layers (ESLs) characterized by their sheet resistances Rs. An innovative analytical method is proposed in order to select Rs values optimizing the electromagnetic wave absorption either in low-gigahertz or low-terahertz frequency range. The frequency spectra of the absorption, reflection and transmission coefficients are computed in the range up to 4 THz by using different values of Rs. Then, realistic Rs values of chemically doped graphene monolayers over PET substrates are considered. The designed absorbers are characterized by an absorption coefficient with a peak value of about 0.8 at the first resonant frequency of 1.1 THz, and a 1.4 THz bandwidth centered at 1.5 THz with reflection coefficient below - 10 dB. Moreover, the optical transmittance of the proposed absorbers are computed by means of the optical matrix theory and it is found to be greater than 86% in all the visible ranges

    Electro-mechanical properties of multilayer graphene-based polymeric composite obtained through a capillary rise method

    Get PDF
    A new sensor made of a vinyl-ester polymer composite filled with multilayer graphene nanoplatelets (MLG) is produced through an innovative capillary rise method for application in strain sensing and structural health monitoring. The new sensor is characterized by high stability of the piezoresistive response under quasi-static consecutive loading/unloading cycles and monotonic tests. This is due to the peculiarity of the fabrication process that ensures a smooth and clean surface of the sensor, without the presence of filler agglomerates acting as micro- or macro-sized defects in the composite

    Surface disinfections: present and future

    Get PDF
    The propagation of antibiotic resistance increases the chances of major infections for patients during hospitalization and the spread of health related diseases. Therefore finding new and effective solutions to prevent the proliferation of pathogenic microorganisms is critical, in order to protect hospital environment, such as the surfaces of biomedical devices. Modern nanotechnology has proven to be an effective countermeasure to tackle the threat of infections. On this note, recent scientific breakthroughs have demonstrated that antimicrobial nanomaterials are effective in preventing pathogens from developing resistance. Despite the ability to destroy a great deal of bacteria and control the outbreak of infections, nanomaterials present many other advantages. Moreover, it is unlikely for nanomaterials to develop resistance due to their multiple and simultaneous bactericidal mechanisms. In recent years, science has explored more complex antimicrobial coatings and nanomaterials based on graphene have shown great potential in antibacterial treatment. The purpose of this article is to deepen the discussion on the threat of infections related to surface disinfection and to assess the state of the art and potential solutions, with specific focus on disinfection procedures using nanomaterials

    Electrical, mechanical and electromechanical properties of graphene-thermoset polymer composites produced using acetone-DMF solvents

    Get PDF
    Recently, graphene-polymer composites gained a central role in advanced stress and strain sensing. A fundamental step in the production of epoxy-composites filled with graphene nanoplatelets (GNPs) consists in the exfoliation and dispersion of expanded graphite in a proper solvent, in the mixing of the resulting GNP suspension with the polymer matrix, and in the final removal of the solvent from the composite before curing through evaporation. The effects of traces of residual solvent on polymer curing process are usually overlooked, even if it has been found that even a small amount of residual solvent can affect the mechanical properties of the final composite. In this paper, we show that residual traces of N,N′-Dimethylformamide (DMF) in vinylester epoxy composites can induce relevant variations of the electrical, mechanical and electromechanical properties of the cured GNP-composite. To this purpose, a complete analysis of the morphological and structural characteristics of the composite samples produced using different solvent mixtures (combining acetone and DMF) is performed. Moreover, electrical, mechanical and electromechanical properties of the produced composites are assessed. In particular, the effect on the piezoresistive response of the use of DMF in the solvent mixture is analyzed using an experimental strain dependent percolation law to fit the measured electromechanical data. It is shown that the composites realized using a higher amount of DMF are characterized by a higher electrical conductivity and by a strong reduction of Young’s Modulus

    Enamel remineralization and repair results of Biomimetic Hydroxyapatite toothpaste on deciduous teeth: an effective option to fluoride toothpaste

    Get PDF
    Background: Dental caries is a recognized worldwide public health problem. Despite being one of the most efective strategies against dental caries, the excessive use of fuorine may result in a potential risk of developing dental fuorosis especially in children under age of six. The purpose of this work is to analyze a fuorine-free toothpaste containing Biomimetic Hydroxyapatite to assess enamel re-mineralizing and repairing properties. Results: The study was performed in vitro and in vivo, comparing the hydroxyapatite toothpaste with two others toothpaste containing diferent fuorine concentrations. The coating efect of the micro-structured Hydroxyapatite nanoparticles reintegrates the enamel with a biomimetic flm reproducing the structure and the morphology of the biologic Hydroxyapatite of the enamel. As demonstrated, the coating is due to the deposit of a new layer of apatite, which presents fewer particles than the natural enamel, not based on the chemical—physical changes occurring in fuorinated toothpastes. Moreover, it shows resistance to brushing as a consequence of chemical bonds between the synthetic and natural crystals of the enamel. Conclusions: The use of Biomimetic Hydroxyapatite toothpastes has proven to be a valuable prevention measure against dental caries in primary dentition since it prevents the risk of fuorosis

    Electrical conductivity of carbon nanotubes grown inside a mesoporous anodic aluminium oxide membrane

    Get PDF
    Well-aligned, open-ended carbon nanotubes (CNTs), free of catalyst and other carbon products, were synthesized inside the pores of an anodic aluminium oxide (AO) template without using any metallic catalyst. The CNTs and the CNT/AO composites were characterized by scanning and transmission electron microscopy, thermogravimetric analysis, Raman spectroscopy and X-ray diffraction. Particular care was devoted to the reactor design, synthesis conditions, the catalytic role of the templating alumina surface and the preservation of the alumina structure. The transport properties (sorption, diffusion and permeability) to water vapor were evaluated for both the alumina template and the CNT/AO composite membrane. The measured effective electrical volume conductivity of the CNT/AO composite was found ranging from a few up to 10 kS/m, in line with the recent literature. The estimated averaged values of the CNTs-wall conductivity was around 50 kS/m

    Effect of electric field polarization and temperature on the effective permittivity and conductivity of porous anodic aluminium oxide membranes

    Get PDF
    Porous insulators offer new opportunities for the controlled guest–host synthesis of nanowires for future integrated circuits characterized by low propagation delay, crosstalk and power consumption. We propose a method to estimate the effect of the electric field polarization and temperature on the electrical properties of different types of synthesized porous anodic aluminium oxide membranes. It results that the effective permittivity along the pore axis is generally 20% higher than the one in the orthogonal direction. The type of solution and the voltage level applied during anodization are the main parameters affecting the AAO templates characteristics, i.e. their porosity and chemical content. The values of permittivity of the final material, are typically in the range 2.6–3.2 for large pore diameter membranes including phosphorus element and having a low water content, and in the range 3.5–4 for the ones with smaller pores, and showing sulphur element incorporation. Moreover, the dc conductivity of the different membranes appears to be correlated to the pore density

    Electromagnetic and electromechanical applications of graphene-based materials

    Get PDF
    This volume contains the extended abstracts of the contributions presented at the workshop Nanoscale Excitations in Emergent Materials (NEEM 2015) held in Rome from 12 to 14 October 2015, an event organized and supported in the framework of the Bilateral Cooperation Agreement between Italy and India within the project of major relevance "Investigating local structure and magnetism of cobalt nano-structures", funded by the Italian Ministry of Foreign Affairs and the Department of Science and Technology in India
    corecore